Magneto-controlled Quantized Electron Transfer to Surface-confined Redox Units and Metal Nanoparticles

نویسندگان

  • Eugenii Katz
  • Itamar Willner
چکیده

Hydrophobic magnetic nanoparticles (NPs) consisting of undecanoate-capped magnetite (Fe3O4, average diameter ca. 5 nm) are used to control quantized electron transfer to surface-confined redox units and metal NPs. A two-phase system consisting of an aqueous electrolyte solution and a toluene phase that includes the suspended undecanoatecapped magnetic NPs is used to control the interfacial properties of the electrode surface. The attracted magnetic NPs form a hydrophobic layer on the electrode surface resulting in the change of the mechanisms of the surface-confined electrochemical processes. A quinone-monolayer modified Au electrode demonstrates an aqueous-type of the electrochemical process (2e+2H redox mechanism) for the quinone units in the absence of the hydrophobic magnetic NPs, while the attraction of the magnetic NPs to the surface results in the stepwise single-electron transfer mechanism characteristic of a dry nonaqueous medium. Also, the attraction of the hydrophobic magnetic NPs to the Au electrode surface modified with Au NPs (ca. 1.4 nm) yields a microenvironment with a low dielectric constant that results in the single-electron quantum charging of the Au NPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications*

Tailored sensoric, electronic, photoelectrochemical, and bioelectrocatalytic functions can be designed by organized molecular or biomolecular nanoparticle hybrid configurations on surfaces. Layered receptor-cross-linked Au nanoparticle assemblies on electrodes act as specific sensors of tunable sensitivities. Layered DNA-cross-linked CdS nanoparticles on electrode supports reveal organized asse...

متن کامل

Size-Controlled Electron Transfer and Photocatalytic Activity of ZnOAu Nanoparticle Composites

A challenge in the research of solar energy conversion and photocatalysts is the rational design of materials that can efficiently trap solar energy, convert into charges, and allow controlled transfer of those charges. Notable breakthroughs have been realized recently in the development of molecular catalysts capable of controlled photogenerated electron transfer. 3 However, much less progress...

متن کامل

Gold nanoparticles: past, present, and future.

This perspective reviews recent developments in the synthesis, electrochemistry, and optical properties of gold nanoparticles, with emphasis on papers initiating the developments and with an eye to their consequences. Key aspects of Au nanoparticle synthesis have included the two-phase synthesis of thiolated nanoparticles, the sequestration and reduction of Au salts within dendrimers, the contr...

متن کامل

N408_2c 67..69

So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox ce...

متن کامل

Covalent Modification of Glassy Carbon Electrode with an Imidazolium based Methoxysilyl Ionic Liquid Nanoparticles: Application in Determination of Redox System

Glassy carbon (GC) is the most commonly used carbon-based electrode in the analytical laboratory. Because of the high background current and low electrode response, modification of this electrode can be done by various materials and techniques. An ionic liquid (IL), 1-methyl-3-(3-trimethoxysilyl propyl) imidazoliumbis (trifluoromethylsulfonyl) imide, was covalently cross linked onto the GC surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2006